第四百三十一章 同时开始变成圆形 (第1/2页)
图形的边数就是身份和地位的直观象征,这一点有些类似于印度的种姓制度,但不一样的点就在于“低种姓”是拥有生出“高种姓”图形的能力的。
然而这并没有什么用,因为这种情况下生出的孩子或许一辈子都无法和原生父母相见,而且他们究竟去了哪里也未可知。
就像是现在一样,作为小贵族的五边形家庭就能用画牢关押如此多数量的等边三角形,只为了完成家庭作业,进行稀疏平常的升格实验。
整个下层阶级的生活可想而知。
不过让虞良有些奇怪的是,据蕾吉尔的说法,平面国中的三角形是拥有着攻击性极强的尖角的,对于平面国中的图形生物来说是致命的武器。
这一点同样和图形构造有关系,边数越多,角数就越多,那么每个角的角度相对就会更大,也就更加没有攻击性。
当然,这只是相对而言,因为八边形中也可以有极度尖锐的锐角,反正又不会一定是正八边形。
虞良猜测这种高阶级图形的身份会是将军或元帅,是那些士兵的上级领导,但未必会受到爱戴。
军中长官并非是靠功绩,而是依靠出身和形貌,这恐怕难以服众,所以这种多边形将军在军中的威望恐怕不会太高。
这种压迫下,作为天生士兵的三角形们,本就愚笨且暴躁,还拥有着强大的进攻性武器,那他们为什么没有反抗这种堪称是残暴的统治呢?
虞良的心中难免感觉到疑惑,这种图形的设定看起来似乎是非常合理的,边数少的图形更容易获得尖锐的攻击性武器,是天然的士兵,而边数多的图形则更加智慧,作为国家的统治者,圆形拥有着更高的智慧,担当起管理和规划的职责也是正常的。
大概,上帝的本意就是将智力和武力分别交给不同的图形,期许他们能够共同创造璀璨的文明,结果却和上帝想象的完全不一样。
先智带动后智的理想局面并没有出现。
大概是哪一步出现问题了吧。
虞良没有去思考答案,因为此时身处于平面国的他思考的是另外一个问题。
社会的不公平有,阶级斗争的基础也有,这种条件下若是能够有一个足够优秀的领导者,是不是就能轻而易举地掀起一场在平面国的革命?
想要在一个副本中最大限度地获取资源,那么依靠常规手段肯定是不够的,像演员阿泽惯用的套路那样掀起革命显然是最高效的方法,因为革命就代表着社会洗牌,平面国重新分配生产资料,作为领导者是拥有财富的第一支配权的。
如果是一个心怀天下的革命者,那对于社会来说自然是好事,但虞良这样的人掀起革命的动机就不单纯,只不过是换一个“王”而已,他的目的自然是离开副本的时候能带上更多的资源。
嘶——
等等。
顺着这个思路想下去,虞良突然意识到一个很关键的问题。
谈起革命就一定会想到那个演员阿泽,他的能力天然适合扮演成其他角色,假如那家伙在平面国的话,一定会毫不犹豫地变换风云。
假如在?
不对,好像不是假如。
当怀疑产生的时候,这就已经成为了既定事实,虞良越想越觉得不对劲,他仔细回忆着两个月前晚上的那一个小时。
是阿泽第一次盗取他剧本的那一个小时。
在那一个小时里,他好像是看过了页面中的拓荒本目录!
看见别人参加拓荒本,所以自己也要参加,一般人是绝不会如此无聊的,但阿泽不一样。
如果他真的知道了虞良想要进入平面国,那就有99%的概率会跟过来,这家伙绝对有这么无聊。
再仔细想想,阿泽和他们约定在几个月后于忘城会和,但他从来就没有问过万一那个时候他正好处于副本该怎么办。
怎么办?
当然是没问题啊,因为这家伙也混进这个副本了,时间上完全对的上。
虞良长舒出一口气,真正感觉到了这个副本的棘手。
有阿泽这种人物在,估计平面国要不了多久就会乱起来了,他的能力简直就是天生的搅屎棍,称一个“祸国殃民”也绝不为过。
“怎么了?你听起来有些紧张的样子。”蕾吉尔敏锐地感觉到身边桐人的变化。
平面国的国民视觉不算突出,但察觉他形情绪的能力却是一点都不弱。
“嗯,只是突然看到了一些不太好的东西。”虞良沉声道。
“什么东西?”蕾吉尔顿时上套,追问道。
桐人的突然出现本就带着一些神秘色彩,就像是那些史诗故事中的穿越者或转生者一样,所以有着一些常图难以理解的能力也不奇怪。
“我看见了……暴力和动乱再次降临这个国家。”虞良故意用一种充满迷茫的语气说道,然后又摇摇身体,“不过也不一定,可能只是我的记忆混乱了吧。”
“暴力和动乱?”蕾吉尔听见这样的词汇却并没有感觉到太过恐惧,只是有些好奇地问道,“你能知道大概是哪一种类型的动乱吗?”
“大概是……由一些意料之外的图形引起的动乱,具体的我也不清楚。”虞良立马就开始模棱两可地回答,这样的话就算说错也没有关系,万一说中了,还能给他安上一个预言家的称号。
有了这种履历,说不定日后的探索能稍微顺利一些。
“意料之外的图形?”蕾吉尔表示出不解,这一点她有所猜测,“是那些不规则图形吗?”
而后她又摇摇身子:“那些家伙的话,还是有些难的吧?毕竟连那些三角形的叛乱都很难起到效果。”
说到这里,她情不自禁地咯咯笑起来,念诵起历史课上背诵过的内容:“面对被彻底抢夺走所有希望的顶着锐角的乌合之众,我们伟大的统治阶级拥有充足的手段来对付他们。”
“三角形们在数量和攻击性上的优势的确让我们的领袖难以应付,但这个世界上自然的法则总是公平而睿智的,当劳动阶级的智慧和品格有所提高时,他们的角度同样会增加,使得他们向着更高贵的等边三角形变化,任何图形都是如此。这就是自然界中最伟大合理的代偿法则,同时验证了我们源远流长的贵族制度的天然合法性。”
(本章未完,请点击下一页继续阅读)